منابع مشابه
Pattern formation by bacteria-driven flow.
Some marine bacterial species form mucosal layers, called veils, on sulfidic marine sediment. The bacteria attached to this veil actively swim and exert force on the surrounding fluid. The bacteria can break free of the veil and swim, chemotacting back to the veil. Over time the veil forms holes arranged in a hexagonal pattern. Motivated by this system, we present a simplified model to describe...
متن کاملEnergy-Driven Pattern Formation
Many physical systems can be modelled by nonconvex variational problems regularized by higher-order terms. Examples include martensitic phase transformation, micromagnetics, and the Ginzburg–Landau model of nucleation. We are interested in the singular limit, when the coefficient of the higher-order term tends to zero. Our attention is on the internal structure of walls, and the character of mi...
متن کاملPhysical mechanisms for chemotactic pattern formation by bacteria.
This paper formulates a theory for chemotactic pattern formation by the bacteria Escherichia coli in the presence of excreted attractant. In a chemotactically neutral background, through chemoattractant signaling, the bacteria organize into swarm rings and aggregates. The analysis invokes only those physical processes that are both justifiable by known biochemistry and necessary and sufficient ...
متن کاملPattern formation driven by nematic ordering of assembling biopolymers.
The biopolymers actin and microtubules are often in an ongoing assembling-disassembling state far from thermal equilibrium. Above a critical density this leads to spatially periodic patterns, as shown by a scaling argument and in terms of a phenomenological continuum model, which meets also Onsager's statistical theory of the nematic-to-isotropic transition in the absence of reaction kinetics. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2005
ISSN: 0006-3495
DOI: 10.1529/biophysj.104.053348